Regularity and dimension spectrum of the equivariant spectral triple for the odd dimensional quantum spheres

نویسنده

  • Arupkumar Pal
چکیده

The odd dimensional quantum sphere S q is a homogeneous space for the quantum group SUq(l + 1). A generic equivariant spectral triple for S 2l+1 q on its L2 space was constructed by Chakraborty & Pal in [4]. We prove regularity for that spectral triple here. We also compute its dimension spectrum and show that it is simple. We give detailed construction of its smooth function algebra and some related algebras that help proving regularity and in the computation of the dimension spectrum. Following the idea of Connes for SUq(2), we first study another spectral triple for S 2l+1 q equivariant under torus group action constructed by Chakraborty & Pal in [3]. We then derive the results for the SUq(l+ 1)-equivariant triple in the q = 0 case from those for the torus equivariant triple. For the q 6= 0 case, we deduce regularity and dimension spectrum from the q = 0 case. AMS Subject Classification No.: 58B34, 46L87, 19K33

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant spectral triples on the quantum SU(2) group

We characterize all equivariant odd spectral triples on the quantum SU(2) group having a nontrivial Chern character. It is shown that the dimension of an equivariant spectral triple is at least three, and there does exist a 3-summable equivariant spectral triple. We also show that given any odd spectral triple, there is an odd equivariant spectral triple that induces the same element in K. AMS ...

متن کامل

Torus equivariant spectral triples for odd dimensional quantum spheres coming from C-extensions

The torus group (S) has a canonical action on the odd dimensional sphere S q . We take the natural Hilbert space representation where this action is implemented and characterize all odd spectral triples acting on that space and equivariant with respect to that action. This characterization gives a construction of an optimum family of equivariant spectral triples having nontrivial K-homology cla...

متن کامل

Characterization of SUq(l + 1)-equivariant spectral triples for the odd dimensional quantum spheres

Abstract The quantum group SUq(l + 1) has a canonical action on the odd dimensional sphere S q . All odd spectral triples acting on the L2 space of S 2l+1 q and equivariant under this action have been characterized. This characterization then leads to the construction of an optimum family of equivariant spectral triples having nontrivial K-homology class. These generalize the results of Chakrab...

متن کامل

Dirac Operators on Quantum Projective Spaces

We construct a family of self-adjoint operators DN , N ∈ Z, which have compact resolvent and bounded commutators with the coordinate algebra of the quantum projective space CPq, for any ` ≥ 2 and 0 < q < 1. They provide 0-dimensional equivariant even spectral triples. If ` is odd and N = 1 2 (` + 1), the spectral triple is real with KO-dimension 2` mod 8.

متن کامل

Equivariant spectral triples for SUq(l + 1) and the odd dimensional quantum spheres

We formulate the notion of equivariance of an operator with respect to a covariant representation of a C∗-dynamical system. We then use a combinatorial technique used by the authors earlier in characterizing spectral triples for SUq(2) to investigate equivariant spectral triples for two classes of spaces: the quantum groups SUq(l+1) for l > 1, and the odd dimensional quantum spheres S q of Vaks...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008